Keynote: Towards Scalable Synthetic Biology and Engineering Beyond the Bioreactor (BioSysBio 2009)

Adam Arkin
UC Berkeley

People have been doing "Old School" synbio for a long time, of course: take corn (which came from Teosinte), dogs. But is selective breeding actually equivalent, in some sense, to "old school" synthetic biology? He argues that they are like synbio because they are human-designed. He further argues that the main difference is that in synbio, you know what you're doing. Non-synthetic biology: artifical introduction of cane toads in Australia, which is a gigantic mess. His point is that the biggest threat to biodiversity and human health is general things that already exist.

So the point of synbio is that it could make things more transparent, efficient, reliable, predictable and safe. How can we reduce the time and improve the reliability of biosynthesis? standardized parts, CAD, methods for quickly assembling parts, etc. But is design scalable? Applications will always have application-specific parts, but there are sets of function common or probable in all applications.

Transcriptional Logics. Why RNA transcripts? There are lots of different shapes, it avoids promoter limitations (physical homogeneity), and many are governed by Watson-Crick base pairing (and therefore designable). You can put multiple attenuators in series. You can also put different antisenses together to make different logic gates.

Protein Logics: Increasing flux through a biosynthetic pathway. Different activities of various enzymes – different turnovers. Loss of substrate through runoff to other pathways. Solution: build a scaffold tolocalize the enzymes and substrates (import from eukaryotes). Then he spent some time describing recombinases and invertase dynamics.

Evolved systems are complex and subtle. Synbio organisms need to deal with the same uncertainity and competition as the existing organisms. Spent some time talking about treating cancer with bacteria. Why do bacteria grow preferentially in tumors? Better nutrient concentrations, reduced immune surveillance, differential growth rates, and differential clearance rates. In humans, the bacteria that have been tried are pathogens, which make you sick, and you needs LOADS of it in the body. There is one that's used for bladder cancer, and has an 85% success rate.

Wednesday Session 3
http://friendfeed.com/rooms/biosysbio
http://conferences.theiet.org/biosysbio

Please note that this post is merely my notes on the presentation. They are not guaranteed to be correct, and unless explicitly stated are not my opinions. They do not reflect the opinions of my employers. Any errors you can happily assume to be mine and no-one else's. I'm happy to correct any errors you may spot – just let me know!

Read and post comments |
Send to a friend

original

Advertisements

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s