Sweetie DNA and Schoolkids: Genes and DNA for Year 3s

I volunteer with the STEM Ambassador programme in the north of England, and in preparation for a talk / hands-on session I was giving at a local primary school last week, I went in search of visual aids for DNA. The main focus of the event at the school was helping the kids of three Year 3 classes build models of DNA out of sweets (as described in this Guardian article). Before we got stuck into the gummy bears and liquorice, I wanted to give them a short introduction to DNA. I had discovered a lovely pattern for crocheting DNA, which I followed the night before the event, which worked out great (you can see the results in my other blog post about the crocheted DNA itself). After asking them to pass the “DNA” around and take a look, I got started on my talk.

I used the slides below to give them something to look at while we chatted about DNA. Getting them to try to pronounce “Deoxyribonucleic acid” was hilarious for all of us and got them engaged in what I was saying from the start.

After giving them an introduction, I stopped at slide 7 and showed them the sweetie DNA that I had made with my son over the weekend in my best “Here’s one I prepared earlier” style. They were very excited to be using sweets to build their models – I hope they were allowed to eat them at the end of the day!

They were already sitting about 5 to a table, so we handed out enough materials that each table could make one model. The sugar phosphate backbone was strawberry liquorice with sherbet inside, and the As, Ts, Cs, and Gs were gummy bears. They all worked together really well. The gummy bears were very colorful but quite firm, so it took quite a bit of effort for the kids to push them onto the cocktail sticks / toothpicks. However, we had only one poked palm (that I was aware of) – the kids were pretty dexterous. The kids made beautiful models, and it was loads of fun helping them. They were quite keen to show us adults their handiwork, too. They were rightly proud of their sweet-based masterpieces.

Once they finished building their models, we had just a few minutes left, so I showed them slides 8 and 9, which talked about putting genes from one organism in another. I told them to imagine me tearing out a recipe for fluorescence from the jellyfish recipe book and stuffing it into a bacteria’s recipe book. Then, you could create fluorescent bacteria! Slide 9 is a picture of an agar plate of fluorescent bacterial colonies with a difference: the researchers had made a beach scene with them! So, I asked the kids to draw “bacterial colony”pictures with chalk on black paper. They loved that as well: volcanoes, cheetahs, eagles, sharks, and more. One scientific soul even drew DNA and the bacteriophage from slide 2!

The kids were engaged throughout, providing loads of good answers to my questions and asking fantastic questions themselves. I visited 3 different classrooms, and they all showed such an interest in science. 8 is a fabulous age – all curiosity and interest. Thanks very much to the lovely teachers and staff, and of course to the schoolkids; it was fun hanging out with you all! …and thanks for letting me use your pictures of my visit. Thanks also to the STEM Ambassador programme for both organizing this visit and providing the sweets!

Adventures in Crocheted DNA

I made some crocheted DNA this week, and I was so impressed with both the free pattern I found, and the result, that I thought I should share my experiences here.

IMG_20170313_201224993 (1)

I volunteer with the STEM Ambassador programme in the north of England, and in preparation for a talk / hands-on session I was giving at a local primary school, I went in search of visual aids for talking about DNA. I was already planning to help the kids of three Year 3 classes build models of DNA out of sweets (as described in this Guardian article), but before we got stuck into the gummy bears and liquorice, I wanted to give them a short introduction to DNA. (I go into more detail about the actual presentation I gave, as well as how the sweetie DNA turned out, in my related post on Genes and DNA for Year 3s.)

So, how do you make crocheted DNA? Well, I had a vague recollection of a DNA scarf pattern that I had come across some time ago (and you can try your hand at too), but I knew that would take too long to make. Also, it didn’t really have the 3-dimensional look I was going for. The scarf is gorgeous and scientifically accurate, but it isn’t much better than a drawing or a video from the perspective of the kids; it doesn’t show them the shape of a double helix.

My Googling then took me to the Wunderkammer blog by Jessica Polka, where she had posted this free pattern for crocheted DNA. It was another happy convergence (as was true with the scarf) of science and wool. You should all visit Jessica’s blog post as it goes into detail about how, if you’re right handed, you end up with a left-handed helix for your crocheted DNA if you follow her pattern. While I appreciate chirality, I went with the simpler left-handed helix for my work this week.

Jessica, however, went the extra mile and crocheted both left handed and backwards with her right hand! I admire her dedication, but I didn’t have that kind of time. I thought it might be useful for others to see the fruits of my labor, and provide a few helpful details on the pattern for others.

Firstly, the original pattern allows you to choose your own length of DNA, which is helpful. However, I had no idea how long it would end up, so for other people looking to make this pattern, I made an initial chain of length 50. As you can see from the picture at the top of the page, the resulting length of DNA was about twice the length of a crochet hook, or about 30 cm, give or take. Your work will be longer than that if you pull it tight (as the natural double helix shape contracts the length somewhat), and shorter if you have an 8-year-old squashing it as small as she can in order to mimic how the DNA is stored in the nucleus 🙂

An important note at this stage is that the pattern is American, and if you’re used to reading UK patterns please replace any reference to “single crochet” with “double crochet”.

After you create the chain and start on the single crochets, then you start to see the single spiral / helix forming:


It’s really quite magical, and I don’t mind saying I felt weirdly happy watching the spiral slowly (but neatly) curl behind the active part of the work. However, I didn’t really believe the second row of single crochets would work as nicely as the first – I figured some fiddling would be required. However, even the second (and final) row spiralled neatly behind the “active site” (I know, I should have been a comedian! Ha ha), as you can see from this picture, where the completed (left-hand) double helix is on the right of the image, and the incomplete single spiral on the left:


Finally, I didn’t tidy away the ends of the yarn on either side of the completed work as it 1) allowed for a useful place to hold the DNA while twirling it, creating a pleasing spin to watch, and 2) it was just about right to tie the ends together and make a circle of DNA should you so desire!

It only took about 30 minutes (including interruptions). I gave the DNA to the school at the end of the STEM event, as the kids seemed enthralled by it. The major and minor “grooves” were clear – clear enough that I was able to point them out to 7 and 8 year olds, who were able to understand the difference. I was also able to flatten it and show its similarities with the “ladder” diagram that I had up on a slide to show them how they were going to build their sweetie DNA.

Kids playing with Crocheted DNA
Kids playing with Crocheted DNA

I made it almost as an afterthought, yet it was so beautifully tactile when held and elegant when spun that the kids really enjoyed it. One girl in particular kept on spinning and spinning it, making the 30 minutes of my effort well worthwhile. I’ll definitely be making more whenever I run a similar event in future. Perhaps I should start making a full set of human “chromosomes”? But what colors should I choose for each one? Thoughts in the comments please!

When three scientists walk into a primary school…

Last week I had another volunteer session as a STEM Ambassador with a local primary school. I was one of three STEM Ambassadors (as well as the lovely STEM coordinator Catherine Brophy) who spoke for an hour with a variety of Key Stage 2 children (anywhere from around 7-10 years old I think) about being a scientist. They interviewed all four of us about what it means to be a scientist, why it is fun/important, and more. When I wanted to speak a bit more about what it means to “do biology with a computer”, I referred occasionally to these slides I had made for a similar purpose a few years back:

The slides are full of pretty pictures (the notes to accompany these slides are also available on my blog) and they gave me a way to focus the children’s attention. However, the kids last week really didn’t need much focusing, and asked lots of great questions. They asked if I had invented anything (does inventing biological data standards count? I think so…!), who my inspirations were (my high school Biology teacher of course, among others), if I had any pets (slightly off topic!), and what my greatest accomplishment was (my thesis – phew!). They all seemed really animated, which is one of the best perks of going to a primary rather than a secondary school. I love the fact that secondary school students can handle more complex discussions, but the enthusiasm of primary school kids is just stupendous.

This trip to a primary school was very timely, as I had recently been to a parents’ meeting at my own son’s primary school about the change in the English school system away from levels. The head teacher was fantastic at explaining the changes, but one of the things I noticed about the new system was a seeming lack of guidance for schools in the science curriculum. It worries me that primary schools are being edged away from teaching science due to a large emphasis on English and Mathematics.

However, this is an issue that the STEM network can help solve. As ambassadors, we can come into your school and talk about science, how we became scientists, and why we love it. Last week it was three scientists talking, but the STEM network can provide experiments and other visual aids too, as well as helping schools enter science contests and fairs such as the Big Bang.

We had fun last week. We had a chemist (with a background in maths) who brought props: a cow bone, jelly babies, hair dye and other things. She asked the kids what the cow bone and jelly babies had in common (gelatin!), and quite a few of them knew. The other biologist had done field work with butterflies, and had the children imagine how you could mark or safely trap them. I talked about the structure of DNA (one child knew the comparison with a spiral staircase!), and how science was great because you don’t have to accept what anyone says “just because”. You don’t believe them? Test it! Science is imagination, testing, and reproducibility.

You don’t have to take my word for it “just because” I say it’s great – become a STEM Ambassador yourself, and test my statement that it is a completely awesome thing to do 🙂

How can socks facilitate scientific outreach?

OK, it seems odd, at least on the surface. How can socks help science generally, and science outreach specifically? I asked myself the same question a few months ago when I found an email lurking in my inbox, hidden since just before my maternity leave started. It seems a sock company called Sock It To Me socks featured a different Cool Girl each month, and they wished to feature me. I had a lot of questions. Was this for real? Was it an appropriate platform to be talking about myself, and about what I do? Would it seem as if I was trading my online work persona for socks?

Well, the other Cool Girls’ profiles seemed eclectic and interesting: dancers, astrophysicists, mathematicians and many others. So, not bad company to be in, and it was a genuine request. And, before you ask, I will be getting two pairs of socks for my efforts – ah, temptation. But ultimately, I need to take care of my work/public online persona, and I had to decide whether this was a good addition. But then I realized I could talk about ontologies to people who may have never even heard of bioinformatics and, for me, that was too exciting an opportunity to miss. True, it was limited to 600 words, and a writer used the information I gave her to write the final piece, but I think it was all worth it. She did a great job, and within the confines of the article format, I’m happy about how my field of research is portrayed. I really feel strongly about science outreach, and I do think that novel methods of information dissemination shouldn’t necessarily be ruled out.

So, here it is: Ms Cool Girl of the Month, July 2011. What do you think? Did I benefit science or just myself (well, maybe not just myself – I namechecked my high school biology teacher, and mentioned Cameron too)?

Inspiring Science Autumn Newsletter

I’ve been meaning to link to this Autumn’s Inspiring Science newsletter, put out by Claire Willis and others at the Science Learning Centre North-East. Not only does it have interesting articles on the science outreach they’ve been involved with recently and what’s coming up in the near future, but it also has a short article on me and my partnered teacher, Louise, as part of the Teacher Scientist Network. Find more about the programme on the Inspiring Science website. Enjoy!

Inspiring Science Autumn Newsletter

I recently attended an open day at the Science Learning Centre North-East (SLCNE) in my role as half of a Teacher Scientist Network (TSN) partnership. There Louise, my partnered teacher, and I gave a short presentation on how the TSN works, and more specifically about our efforts last year. I enjoyed talking about what a positive experience it was, and also enjoyed seeing the other initiatives (such as Science in the Spotlight and Scientists@Work) that the SLCNE manages.

As an extra bonus, the newsletter for this Centre for Autumn had an article on my TSN partnership with Louise (hence the categorization of this post into the “Self Reference” section). Not only can you read the interview with me and Louise, but you can also read about:

  • ‘Liquid Science’ in March 2010 at Newcastle’s Liquid and Diva Nightclub
  • How you can get funding from the Royal Society (up to £3000!) for “teachers and scientists or engineers to work together on creative investigations involving 5–16 year olds”. The funding goes straight to the school, and the closing date is November 6th. More information: www.royalsoc.ac.uk/education/partnership.htm.
  • Details on the 2009 SLCNE Christmas Lecture from Dr. Laura Grant. She’ll be giving a ‘Cool Science’ presentation “which looks at some of the strange things that happen at low temperatures. The lectures will be performed at four venues across the North East during the first week of December and are suitable for Year 6/7 pupils.” More information: www.slcne.org.uk/christmas.

I strongly encourage you all to join in with your local SLC or branch of TSN, and to have a look at this season’s newsletter!

The Great North Museum: encouraging collaboration, teaching and outreach

Share photos on twitter with Twitpic

This week I attended a great two-hour session run by the brand-spanking new Great North Museum (GNM) designed to encourage collaboration between Newcastle University researchers and the GNM. In addition, ideas for using this type of collaboration in the form of outreach to the community (e.g. schoolkids) was welcome. There have already been some useful research collaborations between the university and the museum, and they want to encourage even more.

The GNM was formed from a number of museums (e.g. the Hancock, and the Hatton Gallery) and under the auspices of many different groups including Newcastle University (a full list is available). It opened its doors last week, over the school holidays. I work in the university building that sits just across the street from the GNM: Hancock building, and every time I looked there was a queue stretching down to the road. You can see an example of this on Simon’s Twitpic (pictured above). It has received more than 67,000 visitors in its first week. Congratulations! I have to say that the museum is really impressive from the outside, and looks great on the inside. I haven’t given myself the full tour yet, but I will be doing so soon.

While at the event today, I learned some interesting things about the contents of the GNM, and I thought it might be of general interest. The GNM has over 500,000 items in its collection, of which there is only space for 3,500 to be displayed, even with the revamp of the museums. They have a taxidermist on-site, as they still get roadkill and the occasional other type of animal to prepare for the collection.

Their collection covers a wide array of natural history and archaeology, and includes:

  • birds and bird eggs, including a Great Auk egg
  • an extensive collection of molluscs, including 1000s of type specimens
  • sea slug specimens and figures
  • insects, most of which are stored in their original victorian cabinets
  • an osteology collection which includes moa, great hawks and dodos
  • game heads
  • botany specimens and drawings, including an extensive herbarium with lichens and north-eastern seaweed
  • paleozoology, including a carboniferous tetrapod (crocodile-like amphibian), with predominately local geology with lots of type material, some of which is on display – recent improvements in display cases’ environments now allow this
  • paleobotany including a big fossilized tree trunk, a bunch of specimens from the 1830s and 100s of thin sections of fossils
  • minerals
  • ethnography material, including some original items from Captain Cook
  • Egyptology
  • extensive Roman archaelogy from Hadrian’s Wall
  • prehistoric archaeology
  • Anglo-saxon and medieval collections
  • Greek and Etruscan art and archaeology
  • fine art in the Hatton collections and original Bewick prints and blocks
  • a large archive which includes letters from people like Mary Anning, Richard Owen and Charles Darwin

The oldest item in the archaeology collection is a 11,000-year-old paleolithic flint blade found in the region. There is also a prehistoric gallery at the GNM, and the Hadrian’s Wall gallery is the largest at the GNM. The museum also houses the Shefton collection of about 1,000 Greek and Etruscan items.

In terms of collaboration and outreach, a couple of points came across clearly amongst the case studies and discussions:

  1. The museum can be used to teach biodiversity and conservationism
  2. Using the items in the museum, re-creations of important research can be done (and are being done). For instance, it was museum collections of bird eggs that helped researchers figure out that eggshells were thinning due to DDT ingestion by birds
  3. Collaboration between researchers at the university and the museum can lead to truly interesting work being done. Showcasing university research in the museum, engaging with schools and the wider community, and performing research with the help of the museum are the sorts of things that were discussed.

I like having a museum on my (work) doorstep, and hope to find some way to work with it. Enjoy your visit!