Housekeeping & Self References Outreach

Sweetie DNA and Schoolkids: Genes and DNA for Year 3s

I volunteer with the STEM Ambassador programme in the north of England, and in preparation for a talk / hands-on session I was giving at a local primary school last week, I went in search of visual aids for DNA. The main focus of the event at the school was helping the kids of three Year 3 classes build models of DNA out of sweets (as described in this Guardian article). Before we got stuck into the gummy bears and liquorice, I wanted to give them a short introduction to DNA. I had discovered a lovely pattern for crocheting DNA, which I followed the night before the event, which worked out great (you can see the results in my other blog post about the crocheted DNA itself). After asking them to pass the “DNA” around and take a look, I got started on my talk.

I used the slides below to give them something to look at while we chatted about DNA. Getting them to try to pronounce “Deoxyribonucleic acid” was hilarious for all of us and got them engaged in what I was saying from the start.

After giving them an introduction, I stopped at slide 7 and showed them the sweetie DNA that I had made with my son over the weekend in my best “Here’s one I prepared earlier” style. They were very excited to be using sweets to build their models – I hope they were allowed to eat them at the end of the day!

They were already sitting about 5 to a table, so we handed out enough materials that each table could make one model. The sugar phosphate backbone was strawberry liquorice with sherbet inside, and the As, Ts, Cs, and Gs were gummy bears. They all worked together really well. The gummy bears were very colorful but quite firm, so it took quite a bit of effort for the kids to push them onto the cocktail sticks / toothpicks. However, we had only one poked palm (that I was aware of) – the kids were pretty dexterous. The kids made beautiful models, and it was loads of fun helping them. They were quite keen to show us adults their handiwork, too. They were rightly proud of their sweet-based masterpieces.

Once they finished building their models, we had just a few minutes left, so I showed them slides 8 and 9, which talked about putting genes from one organism in another. I told them to imagine me tearing out a recipe for fluorescence from the jellyfish recipe book and stuffing it into a bacteria’s recipe book. Then, you could create fluorescent bacteria! Slide 9 is a picture of an agar plate of fluorescent bacterial colonies with a difference: the researchers had made a beach scene with them! So, I asked the kids to draw “bacterial colony”pictures with chalk on black paper. They loved that as well: volcanoes, cheetahs, eagles, sharks, and more. One scientific soul even drew DNA and the bacteriophage from slide 2!

The kids were engaged throughout, providing loads of good answers to my questions and asking fantastic questions themselves. I visited 3 different classrooms, and they all showed such an interest in science. 8 is a fabulous age – all curiosity and interest. Thanks very much to the lovely teachers and staff, and of course to the schoolkids; it was fun hanging out with you all! …and thanks for letting me use your pictures of my visit. Thanks also to the STEM Ambassador programme for both organizing this visit and providing the sweets!

Housekeeping & Self References Outreach

Adventures in Crocheted DNA

I made some crocheted DNA this week, and I was so impressed with both the free pattern I found, and the result, that I thought I should share my experiences here.

IMG_20170313_201224993 (1)

I volunteer with the STEM Ambassador programme in the north of England, and in preparation for a talk / hands-on session I was giving at a local primary school, I went in search of visual aids for talking about DNA. I was already planning to help the kids of three Year 3 classes build models of DNA out of sweets (as described in this Guardian article), but before we got stuck into the gummy bears and liquorice, I wanted to give them a short introduction to DNA. (I go into more detail about the actual presentation I gave, as well as how the sweetie DNA turned out, in my related post on Genes and DNA for Year 3s.)

So, how do you make crocheted DNA? Well, I had a vague recollection of a DNA scarf pattern that I had come across some time ago (and you can try your hand at too), but I knew that would take too long to make. Also, it didn’t really have the 3-dimensional look I was going for. The scarf is gorgeous and scientifically accurate, but it isn’t much better than a drawing or a video from the perspective of the kids; it doesn’t show them the shape of a double helix.

My Googling then took me to the Wunderkammer blog by Jessica Polka, where she had posted this free pattern for crocheted DNA. It was another happy convergence (as was true with the scarf) of science and wool. You should all visit Jessica’s blog post as it goes into detail about how, if you’re right handed, you end up with a left-handed helix for your crocheted DNA if you follow her pattern. While I appreciate chirality, I went with the simpler left-handed helix for my work this week.

Jessica, however, went the extra mile and crocheted both left handed and backwards with her right hand! I admire her dedication, but I didn’t have that kind of time. I thought it might be useful for others to see the fruits of my labor, and provide a few helpful details on the pattern for others.

Firstly, the original pattern allows you to choose your own length of DNA, which is helpful. However, I had no idea how long it would end up, so for other people looking to make this pattern, I made an initial chain of length 50. As you can see from the picture at the top of the page, the resulting length of DNA was about twice the length of a crochet hook, or about 30 cm, give or take. Your work will be longer than that if you pull it tight (as the natural double helix shape contracts the length somewhat), and shorter if you have an 8-year-old squashing it as small as she can in order to mimic how the DNA is stored in the nucleus 🙂

An important note at this stage is that the pattern is American, and if you’re used to reading UK patterns please replace any reference to “single crochet” with “double crochet”.

After you create the chain and start on the single crochets, then you start to see the single spiral / helix forming:


It’s really quite magical, and I don’t mind saying I felt weirdly happy watching the spiral slowly (but neatly) curl behind the active part of the work. However, I didn’t really believe the second row of single crochets would work as nicely as the first – I figured some fiddling would be required. However, even the second (and final) row spiralled neatly behind the “active site” (I know, I should have been a comedian! Ha ha), as you can see from this picture, where the completed (left-hand) double helix is on the right of the image, and the incomplete single spiral on the left:


Finally, I didn’t tidy away the ends of the yarn on either side of the completed work as it 1) allowed for a useful place to hold the DNA while twirling it, creating a pleasing spin to watch, and 2) it was just about right to tie the ends together and make a circle of DNA should you so desire!

It only took about 30 minutes (including interruptions). I gave the DNA to the school at the end of the STEM event, as the kids seemed enthralled by it. The major and minor “grooves” were clear – clear enough that I was able to point them out to 7 and 8 year olds, who were able to understand the difference. I was also able to flatten it and show its similarities with the “ladder” diagram that I had up on a slide to show them how they were going to build their sweetie DNA.

Kids playing with Crocheted DNA
Kids playing with Crocheted DNA

I made it almost as an afterthought, yet it was so beautifully tactile when held and elegant when spun that the kids really enjoyed it. One girl in particular kept on spinning and spinning it, making the 30 minutes of my effort well worthwhile. I’ll definitely be making more whenever I run a similar event in future. Perhaps I should start making a full set of human “chromosomes”? But what colors should I choose for each one? Thoughts in the comments please!

Housekeeping & Self References Outreach

Slides and Notes available on “Working with Genes” (presentation for kids)

Those of you who have been following my posts for a while might have read this one from Fall 2008: Scientist Meets Small Children, and doesn’t stop talking (and listening) all day!.

The slides are now available from SlideShare, and embedded below:

The only problem I’m having is that the slides are mainly pictures. I have extensive notes to guide the speaker in the notes section of the Open Office document, but they don’t seem to be saved to SlideShare. So, until I can figure something better out, here are the notes for each slide. Any comments, suggestions, modifications, etc very much welcome. I hope it helps people. Enjoy!

Notes for slides:

Slide 1 (Title Slide)

KS1 and KS2:
These are Maine Coons, a particular breed of cat.
Has anyone heard of “genes” before?
Genes store the information that makes each one of us different. Eye color, shoe size, hair color…
Sometimes, there can be a change in a gene that is “good”: that allows a cat to run faster, or a dog to smell better
Sometimes that change can cause problems: some diseases are caused by mistakes in genes
Cats have been around for 1000s of years. They were domesticated by us.
How do we get domestic animals? What does domestic mean?
We can breed animals we like the most together
New ways of doing this are around now, which I’ll talk about later
How do you know it is the right thing to do? (Irish setters – epilepsy, laborador retrievers – hip problems, “mutts” – can be healthier)
In short: remember to think for yourself, and learn before reaching a decision.

Slide 2

KS1 and KS2:
Charlie is a normal domestic cat. She is 6 years old and lives with me. Do you know what that pattern is? She’s a brown tabby with some orange spots.
This other cat looks the same, and acts the same. But there is one big difference. He wouldn’t make my neighbour sneeze!
How many of you know people who sneeze when they are around cats or dogs?
The domestic cat was selectively bred from wild cats at least 9.500 years ago, and has been around since at least ancient Egypt ( and probably longer, see recent SciAm article:
The company that breeds cats like the guy at the bottom here found a few cats that didn’t cause allergies, and bred more of them.
What traits do you like most in cats? What would you like to see?
Allerca bred out cases where the Fel d 1 glycoprotein was a version that caused allergic reactions. The process uses gene sequencing to detect rare naturally occurring genetic divergences in cats.

Slide 3

What kind of domestic animal is this?
KS1 and KS2:
Humans breed horses to look and act specific ways
What do you think are the most important things that make up a good horse?
Strong muscles?
Good eyesight?

What might you want to breed out of horses? Do they have any problems that should be fixed?

Slide 4

KS1 and KS2
Would those things you suggested in the previous slide be good all the time?
A large horse would have trouble finding food on a small island
A black horse would stand out in the desert.
Having lots of different types of horses makes sure that some of them will always survive changes in the environment

Slide 5

KS1 and KS2
What kind of animal is this?
This is a zebrafish. You can often find it in home aquaria. It’s pretty small – only a few centimetres long
Why do you think it is called a zebrafish?

Slide 6

KS1 and KS2
What animals are these?
They’re jellyfish
Under the right light, some jellyfish are fluorescent, and you can get both yellow and green colours.
You can get red fluorescence from a sea coral

Slide 7

KS1 and KS2
What is different about these zebrafish?
They are not striped, and they are different colours.
Instead, they’re called glofish.
The colours are not normally found in zebrafish.
The genes for these colours are taken from the coral and the jellyfish, and added to the zebrafish

Slide 8

KS1 and KS2
What do you think a fishberry is? Can you tell from the name? Do you know what antifreeze is? – it gets put into cars in the winter.
Some scientists tried to make tomatoes resistant to frost by putting a fish antifreeze gene into it. It never worked, but the media picked up on it anyway. “fishberries” –  tomatoes and/or strawberries with the flounder antifreeze gene – were researched, but never worked properly. A bit of an urban legend. See
What are some other ideas for plants that might help them survive bad weather, diseases, or insects?
Scientists have lots of ideas, but they don’t always work. Also, scientists are very careful and try to ensure that the combinations they make are good ones. Lots of testing!

Slide 9

KS1 and KS2
We use germs to make medicine!
The germs in the picture live in our guts, and help us out in digesting our food.
You might have drunk some if you have had a probiotic drink.
Some examples of good choices discussed in previous slide: Using “germs” to make medicine.
Insulin (Diabetes)
We can put the human gene for insulin into these guys, and they will make the medicine for us
Originally from cow, horse, pig or fish pancreases , but now 70% of insulin sold is recombinant (2002).(
With cells dividing rapidly (every 20 minutes), a bacterium containing human cDNA (encoding for insulin, for example) will shortly produce many millions of similar cells (clones) containing the same human gene. : 51 amino acids long
Adding vaccines for humans into food crops/animals (into tomatoes, e.g.)

Slide 10

KS1 and KS2
We can try to fix mistakes in our own bodies!
Target a specific area: Diseases of the eye:
Cystic fibrosis:
It is a single gene defect.
The lung is most affected.
Most heterozygote carriers have approximately 50 % CFTR function and are completely asymptomatic.
(others include Haemophilia)

Slide 11

KS1 and KS2

we change things, and have done for 1000s of years
The tool is not the issue: it used to be just selective breeding, now there are new tools
each individual change has to be thought about, to determine if it is a good idea or not

Slide 12

KS1 and KS2

pigs with less saturated fat (not happened yet, but people talking about it):
spider silk from goats’ milk (in the original study, 5x stronger than steel, by weight, and very flexible – bulletproof vests!):
and now in 2008 from alfalfa , as it would otherwise take 600 lbs of goats’ milk to make one bulletproof vest!
caffeine-free coffee plants:
no-tears onion:

Slide 13

KS1 and KS2

Just a nice picture of different-coloured bacteria on a plate.
Shinomura, Chalfie, and Tsien shared this year’s Nobel Prize for Chemistry for their work on green fluorescent protein, originally isolated from a jellyfish. Science is interesting and beautiful!
This is the last true slide. The one after this links to the licenses for the photos, and the ones after that are just in case we want to show them.

Slide 14 – no notes

Slide 15 – extra

This slide is too old for them, but put it at the end in case there is a specific question by a precocious kid or an adult.
A weakened strain of the common bacterium, Escherrichia coli (E. coli), an inhabitant of the human digestive tract, is the ‘factory’ used in the genetic engineering of insulin. (

Slide 16 – extra

Fluorescent mice. However, the kids might be scared of this pic, or not like it, so include it at the back and only use it if it seems appropriate.

CISBAN Outreach

Scientist Meets Small Children, and doesn’t stop talking (and listening) all day!

[Update: You can get the slides for this presentation now. See my related post.]

This past Monday, one day before fantastic things happened in the voting booths of America (I had already submitted my absentee ballot), I spent a day at a local primary school. Names and locations for the school will not be mentioned, as I am unsure about rules regarding child protection, but the day was great, and I’ll tell you all about that. I had contacted the Teacher Scientist Network (information about volunteering is at the end of the post), which pairs teachers with scientists, about a year or so ago. As far as I know, prior to me, most of the scientists who had volunteered had been wet-lab-based scientists, and the partnerships were generally geared around that sort of work. I am a bioinformatician/computational biologist, which means I spend all my work time in front of a computer. Figuring out what to do with me in the TSN, and who to pair me with, took some effort. However, with the wonderful help of people like Deborah Herridge, and now Claire Willis, from the TSN, I was eventually paired with a teacher. She has a biology background, and now teacher 10-11 year olds. So, she is very aware of what sort of science she wants the kids to learn, and also understands how important it is for kids to interact with a “real” scientist. And what she organized for my visit was just great. Words like funny, wonderful, crazy, surprising, cute, interesting, intelligent, curious, shy, proud, and many others come to my mind when I think of those kids, and I’ll try to explain why.

My teacher partner has organized all this week as the school’s Science Week. And, for the first day, I was to visit and give them all a talk or two, and answer questions, about 1) what it is like being a scientist, and 2) what genes are and how they are used in research and medicine. In the case of the older kids, I also was able to talk a little about ethics, which was really good.

I saw 9 separate classes, speaking at each one, and also gave a short talk at the two assemblies (one for the juniors, and one for the infants). The ages of the children ranged from 5 to 11. In my short talk I had prepared some slides about how I had become a scientist, and the longer talk centered around the theme that me and my teacher partner had decided on: genes, and how they are used in scientific research. Yes, this meant talking about “GM”, but there are so many aspects of it that the media never really touch on, that the talk was wonderfully diverse. I spoke on historical domestication of animals, making medicine for humans, encouraging hardier crops, the similarities and differences between lab-based genetic manipulation and “traditional” selective breeding, the obligatory glowing fish and glowing mice, and the Nobel Laureates in Chemistry for this year, one of whom released a picture of a petri dish of fluorescing bacteria “drawn” with the picture of a sunset.

By the end of the day, my throat was sore from talking. People who know me would not be surprised to hear I talked a lot – that’s a standing joke. However, the kids talked (in a good way!) almost as much as I did. They always wanted to tell me about their experiences, and how they related to the slides, and were full of interesting questions. It was fabulous.

Top Questions Asked, in order of remembered frequency

1. Why do scientists wear white coats?

2. Is that seahorse real? (From a picture from the GloFish website)

3. Can scientists mix more than one gene together?

4. How many colors can you make? (with respect to fluorescent proteins)

5. What happens when you mix colors? (another fluorescent protein question)

6. Do you like America? / Do you like America more than the UK?

7. Does that one have eyes? (When looking at this picture of e.coli.)

8. They look like hot dogs! (Ok, so not a question, but hilariously accurate – of the e.coli, again.)

9. Why does one of my eyes have a bit of brown in it? (This was a child with blue eyes, except for a wedge of brown in one eye.)

10. Is the science in CSI (the TV program) like real science?

11. Are some scientists going to destroy the world with black holes? (A little off-topic, but I didn’t mind at all!)

As you can see, not all of them were strictly on-topic, but they just kept asking question after question. They also did the classic kid trick of raising their hand as if to ask a question, when their real purpose was telling you all about their vacation/pet dog/pet hamster/pet cat/Uncle who used to be a scientist but now works at Asda (yes, really!). But I didn’t mind those at all. I kept on running over time in each classroom, as they had so many things to ask me. It didn’t matter what age – pitch the talk in the right way, and they really seemed to enjoy it!

Some top tips if I were to do it again (which I really would like to do – the teacher I’m paired with and I have some ideas for next time) include:

1. My method of using no text on the vast majority of the slides really worked. It was especially useful as it meant I could stop anywhere in my slides if I was running out of time, and the littlest ones were not distracted by trying to read the words rather than listening to me.

2. Pictures of fluffy, pretty, cute, or “gross” animals were very, very popular. The number of “Awwwws” I got when showing pictures of cats was astounding. Equally, all the older ones wanted to see my pictures of the newborn mice (pretty gross with no hair!), and all ages enjoyed trying to figure out what the photo of e.coli was.

3. As soon as you ask a question, they all raise their hands to answer it. Not sure when this stops, but I know that by the time I was in high school the teachers had a hard time prying any answers out of the majority of us! 😉 However, on Monday I was at a school where the eldest was 11, and they all wanted to contribute. So, ask them questions. I found there were two types: the question where I wanted to get an answer (such as “What traits make a good horse?” or “What do you think makes these two cats different?”) and the type where I just wanted them to feel included in the talk, and just wanted a show of hands (such as “How many of you have a cat?” or “Who has heard of diabetes?”).

4. Introduce some ethics, and show how scientists think very carefully before doing research. We talked about genes a lot, and how putting new genes in bugs like e.coli can help us, e.g. the human insulin gene into e.coli to help with diabetes. I told all the older kids that it wasn’t the tool that is a problem: a tool is neither good nor evil. It’s how that tool is used, and people need to make a fresh decision, and think about the benefits and downsides each time that tool is used. I said genetic modification is like a knife: it is neither good nor bad, and that scientists try very hard to make sure that it is used for the right reasons, and in a safe way.

5. Visually-arresting analogies. Even though DNA is a double-helix and not a spiral staircase, I found it a very useful analogy, especially for the younger ones.

6. My partnered teacher had prepared some slides to show the kids prior to my arrival. They dealt with Mr. Green Genes, the GFP-glowing cat. Some of the other teachers also talked to their kids about inheriting some of your traits from your mom, and some from your dad, and used the labradoodle as a visual aid. This prepped them for my talk, which I think was really helpful.

7. Make your talk inclusive. It keeps their interest, I think. When I showed pictures of cats, I included one picture of my own cat, and told them a little about her. I often asked them questions about if they had pets, or scientists in the family, or liked the look of a picture, or knew what something was.

These are probably things that most people are well aware of, however, I thought I’d just share my experiences!

Things That Surprised Me

1. How many of them knew the word “bacteria” before I could even say it. It was, strangely enough, the top answer to my “What do you think this is?” question when I showed them the picture of e.coli.

2. How many of the kids, without prompting, came up to me after my talks and said that they really enjoyed it.

3. How many came up to me after my talks to ask more questions, or tell me about a scientist in the family.

4. How much enjoyment I got out of giving my talks, and from listening to what the kids had to say.

5. One of the kids made an immediate connection between adding “glowing genes” (GFP etc) to fish, and Jurassic Park. Ok, so it isn’t an exact analogy, but that was really great to hear. It also brought forth a discussion, led by the kids, about saving endangered animals.

And, in one direct appeal to my vanity, a little 5 or 6 year old girl told me as I was leaving her class that she thought I was pretty! Wow, what a nice way to finish a talk, and it definitely helped the ego 😉 I thanked her, and the teacher heard her and told her that her house could have a point. Then I realized that their school, just like Hogwart’s, had houses that got points! Too cool 🙂 And finally, a very great compliment from the teacher I’m paired with: “the kids are so much more enthusiastic about science and a lot of them have asked when you are comming back! Your work was perfectly pitched to the children’s needs and was explained in a way that was so easy to understand.” Thanks!

I highly recommend the Teacher Scientist Network. If you are interested in registering with the Teacher Scientist Network in my area (operated by Science Learning Centre North East), please visit and register at as a scientist. Claire Willis will then receive your application and arrange a mutually convenient time to meet up. If you’re interested, but aren’t sure where to go for your area, then have a look at that page – you can send questions to Claire from there. that website also has more information about the TSN. They don’t ask for very much time from scientists at all, from a day or two per year, to anything that the teacher and scientist agree to. In my case, the head of my Centre told all of us employees that if we wanted to volunteer for the TSN, we could do, and do it on work time. He is most generous, and definitely sees the benefit of science outreach to schools.

Thanks to the TSN, my bosses, my partnered teacher, and most especially all those kids! 🙂

Read and post comments |

Send to a friend