The Great North Museum: encouraging collaboration, teaching and outreach

Share photos on twitter with Twitpic

This week I attended a great two-hour session run by the brand-spanking new Great North Museum (GNM) designed to encourage collaboration between Newcastle University researchers and the GNM. In addition, ideas for using this type of collaboration in the form of outreach to the community (e.g. schoolkids) was welcome. There have already been some useful research collaborations between the university and the museum, and they want to encourage even more.

The GNM was formed from a number of museums (e.g. the Hancock, and the Hatton Gallery) and under the auspices of many different groups including Newcastle University (a full list is available). It opened its doors last week, over the school holidays. I work in the university building that sits just across the street from the GNM: Hancock building, and every time I looked there was a queue stretching down to the road. You can see an example of this on Simon’s Twitpic (pictured above). It has received more than 67,000 visitors in its first week. Congratulations! I have to say that the museum is really impressive from the outside, and looks great on the inside. I haven’t given myself the full tour yet, but I will be doing so soon.

While at the event today, I learned some interesting things about the contents of the GNM, and I thought it might be of general interest. The GNM has over 500,000 items in its collection, of which there is only space for 3,500 to be displayed, even with the revamp of the museums. They have a taxidermist on-site, as they still get roadkill and the occasional other type of animal to prepare for the collection.

Their collection covers a wide array of natural history and archaeology, and includes:

  • birds and bird eggs, including a Great Auk egg
  • an extensive collection of molluscs, including 1000s of type specimens
  • sea slug specimens and figures
  • insects, most of which are stored in their original victorian cabinets
  • an osteology collection which includes moa, great hawks and dodos
  • game heads
  • botany specimens and drawings, including an extensive herbarium with lichens and north-eastern seaweed
  • paleozoology, including a carboniferous tetrapod (crocodile-like amphibian), with predominately local geology with lots of type material, some of which is on display – recent improvements in display cases’ environments now allow this
  • paleobotany including a big fossilized tree trunk, a bunch of specimens from the 1830s and 100s of thin sections of fossils
  • minerals
  • ethnography material, including some original items from Captain Cook
  • Egyptology
  • extensive Roman archaelogy from Hadrian’s Wall
  • prehistoric archaeology
  • Anglo-saxon and medieval collections
  • Greek and Etruscan art and archaeology
  • fine art in the Hatton collections and original Bewick prints and blocks
  • a large archive which includes letters from people like Mary Anning, Richard Owen and Charles Darwin

The oldest item in the archaeology collection is a 11,000-year-old paleolithic flint blade found in the region. There is also a prehistoric gallery at the GNM, and the Hadrian’s Wall gallery is the largest at the GNM. The museum also houses the Shefton collection of about 1,000 Greek and Etruscan items.

In terms of collaboration and outreach, a couple of points came across clearly amongst the case studies and discussions:

  1. The museum can be used to teach biodiversity and conservationism
  2. Using the items in the museum, re-creations of important research can be done (and are being done). For instance, it was museum collections of bird eggs that helped researchers figure out that eggshells were thinning due to DDT ingestion by birds
  3. Collaboration between researchers at the university and the museum can lead to truly interesting work being done. Showcasing university research in the museum, engaging with schools and the wider community, and performing research with the help of the museum are the sorts of things that were discussed.

I like having a museum on my (work) doorstep, and hope to find some way to work with it. Enjoy your visit!

Housekeeping & Self References Outreach

Slides and Notes available on “Working with Genes” (presentation for kids)

Those of you who have been following my posts for a while might have read this one from Fall 2008: Scientist Meets Small Children, and doesn’t stop talking (and listening) all day!.

The slides are now available from SlideShare, and embedded below:

The only problem I’m having is that the slides are mainly pictures. I have extensive notes to guide the speaker in the notes section of the Open Office document, but they don’t seem to be saved to SlideShare. So, until I can figure something better out, here are the notes for each slide. Any comments, suggestions, modifications, etc very much welcome. I hope it helps people. Enjoy!

Notes for slides:

Slide 1 (Title Slide)

KS1 and KS2:
These are Maine Coons, a particular breed of cat.
Has anyone heard of “genes” before?
Genes store the information that makes each one of us different. Eye color, shoe size, hair color…
Sometimes, there can be a change in a gene that is “good”: that allows a cat to run faster, or a dog to smell better
Sometimes that change can cause problems: some diseases are caused by mistakes in genes
Cats have been around for 1000s of years. They were domesticated by us.
How do we get domestic animals? What does domestic mean?
We can breed animals we like the most together
New ways of doing this are around now, which I’ll talk about later
How do you know it is the right thing to do? (Irish setters – epilepsy, laborador retrievers – hip problems, “mutts” – can be healthier)
In short: remember to think for yourself, and learn before reaching a decision.

Slide 2

KS1 and KS2:
Charlie is a normal domestic cat. She is 6 years old and lives with me. Do you know what that pattern is? She’s a brown tabby with some orange spots.
This other cat looks the same, and acts the same. But there is one big difference. He wouldn’t make my neighbour sneeze!
How many of you know people who sneeze when they are around cats or dogs?
The domestic cat was selectively bred from wild cats at least 9.500 years ago, and has been around since at least ancient Egypt ( and probably longer, see recent SciAm article:
The company that breeds cats like the guy at the bottom here found a few cats that didn’t cause allergies, and bred more of them.
What traits do you like most in cats? What would you like to see?
Allerca bred out cases where the Fel d 1 glycoprotein was a version that caused allergic reactions. The process uses gene sequencing to detect rare naturally occurring genetic divergences in cats.

Slide 3

What kind of domestic animal is this?
KS1 and KS2:
Humans breed horses to look and act specific ways
What do you think are the most important things that make up a good horse?
Strong muscles?
Good eyesight?

What might you want to breed out of horses? Do they have any problems that should be fixed?

Slide 4

KS1 and KS2
Would those things you suggested in the previous slide be good all the time?
A large horse would have trouble finding food on a small island
A black horse would stand out in the desert.
Having lots of different types of horses makes sure that some of them will always survive changes in the environment

Slide 5

KS1 and KS2
What kind of animal is this?
This is a zebrafish. You can often find it in home aquaria. It’s pretty small – only a few centimetres long
Why do you think it is called a zebrafish?

Slide 6

KS1 and KS2
What animals are these?
They’re jellyfish
Under the right light, some jellyfish are fluorescent, and you can get both yellow and green colours.
You can get red fluorescence from a sea coral

Slide 7

KS1 and KS2
What is different about these zebrafish?
They are not striped, and they are different colours.
Instead, they’re called glofish.
The colours are not normally found in zebrafish.
The genes for these colours are taken from the coral and the jellyfish, and added to the zebrafish

Slide 8

KS1 and KS2
What do you think a fishberry is? Can you tell from the name? Do you know what antifreeze is? – it gets put into cars in the winter.
Some scientists tried to make tomatoes resistant to frost by putting a fish antifreeze gene into it. It never worked, but the media picked up on it anyway. “fishberries” –  tomatoes and/or strawberries with the flounder antifreeze gene – were researched, but never worked properly. A bit of an urban legend. See
What are some other ideas for plants that might help them survive bad weather, diseases, or insects?
Scientists have lots of ideas, but they don’t always work. Also, scientists are very careful and try to ensure that the combinations they make are good ones. Lots of testing!

Slide 9

KS1 and KS2
We use germs to make medicine!
The germs in the picture live in our guts, and help us out in digesting our food.
You might have drunk some if you have had a probiotic drink.
Some examples of good choices discussed in previous slide: Using “germs” to make medicine.
Insulin (Diabetes)
We can put the human gene for insulin into these guys, and they will make the medicine for us
Originally from cow, horse, pig or fish pancreases , but now 70% of insulin sold is recombinant (2002).(
With cells dividing rapidly (every 20 minutes), a bacterium containing human cDNA (encoding for insulin, for example) will shortly produce many millions of similar cells (clones) containing the same human gene. : 51 amino acids long
Adding vaccines for humans into food crops/animals (into tomatoes, e.g.)

Slide 10

KS1 and KS2
We can try to fix mistakes in our own bodies!
Target a specific area: Diseases of the eye:
Cystic fibrosis:
It is a single gene defect.
The lung is most affected.
Most heterozygote carriers have approximately 50 % CFTR function and are completely asymptomatic.
(others include Haemophilia)

Slide 11

KS1 and KS2

we change things, and have done for 1000s of years
The tool is not the issue: it used to be just selective breeding, now there are new tools
each individual change has to be thought about, to determine if it is a good idea or not

Slide 12

KS1 and KS2

pigs with less saturated fat (not happened yet, but people talking about it):
spider silk from goats’ milk (in the original study, 5x stronger than steel, by weight, and very flexible – bulletproof vests!):
and now in 2008 from alfalfa , as it would otherwise take 600 lbs of goats’ milk to make one bulletproof vest!
caffeine-free coffee plants:
no-tears onion:

Slide 13

KS1 and KS2

Just a nice picture of different-coloured bacteria on a plate.
Shinomura, Chalfie, and Tsien shared this year’s Nobel Prize for Chemistry for their work on green fluorescent protein, originally isolated from a jellyfish. Science is interesting and beautiful!
This is the last true slide. The one after this links to the licenses for the photos, and the ones after that are just in case we want to show them.

Slide 14 – no notes

Slide 15 – extra

This slide is too old for them, but put it at the end in case there is a specific question by a precocious kid or an adult.
A weakened strain of the common bacterium, Escherrichia coli (E. coli), an inhabitant of the human digestive tract, is the ‘factory’ used in the genetic engineering of insulin. (

Slide 16 – extra

Fluorescent mice. However, the kids might be scared of this pic, or not like it, so include it at the back and only use it if it seems appropriate.

CISBAN Outreach

Scientist Meets Small Children, and doesn’t stop talking (and listening) all day!

[Update: You can get the slides for this presentation now. See my related post.]

This past Monday, one day before fantastic things happened in the voting booths of America (I had already submitted my absentee ballot), I spent a day at a local primary school. Names and locations for the school will not be mentioned, as I am unsure about rules regarding child protection, but the day was great, and I’ll tell you all about that. I had contacted the Teacher Scientist Network (information about volunteering is at the end of the post), which pairs teachers with scientists, about a year or so ago. As far as I know, prior to me, most of the scientists who had volunteered had been wet-lab-based scientists, and the partnerships were generally geared around that sort of work. I am a bioinformatician/computational biologist, which means I spend all my work time in front of a computer. Figuring out what to do with me in the TSN, and who to pair me with, took some effort. However, with the wonderful help of people like Deborah Herridge, and now Claire Willis, from the TSN, I was eventually paired with a teacher. She has a biology background, and now teacher 10-11 year olds. So, she is very aware of what sort of science she wants the kids to learn, and also understands how important it is for kids to interact with a “real” scientist. And what she organized for my visit was just great. Words like funny, wonderful, crazy, surprising, cute, interesting, intelligent, curious, shy, proud, and many others come to my mind when I think of those kids, and I’ll try to explain why.

My teacher partner has organized all this week as the school’s Science Week. And, for the first day, I was to visit and give them all a talk or two, and answer questions, about 1) what it is like being a scientist, and 2) what genes are and how they are used in research and medicine. In the case of the older kids, I also was able to talk a little about ethics, which was really good.

I saw 9 separate classes, speaking at each one, and also gave a short talk at the two assemblies (one for the juniors, and one for the infants). The ages of the children ranged from 5 to 11. In my short talk I had prepared some slides about how I had become a scientist, and the longer talk centered around the theme that me and my teacher partner had decided on: genes, and how they are used in scientific research. Yes, this meant talking about “GM”, but there are so many aspects of it that the media never really touch on, that the talk was wonderfully diverse. I spoke on historical domestication of animals, making medicine for humans, encouraging hardier crops, the similarities and differences between lab-based genetic manipulation and “traditional” selective breeding, the obligatory glowing fish and glowing mice, and the Nobel Laureates in Chemistry for this year, one of whom released a picture of a petri dish of fluorescing bacteria “drawn” with the picture of a sunset.

By the end of the day, my throat was sore from talking. People who know me would not be surprised to hear I talked a lot – that’s a standing joke. However, the kids talked (in a good way!) almost as much as I did. They always wanted to tell me about their experiences, and how they related to the slides, and were full of interesting questions. It was fabulous.

Top Questions Asked, in order of remembered frequency

1. Why do scientists wear white coats?

2. Is that seahorse real? (From a picture from the GloFish website)

3. Can scientists mix more than one gene together?

4. How many colors can you make? (with respect to fluorescent proteins)

5. What happens when you mix colors? (another fluorescent protein question)

6. Do you like America? / Do you like America more than the UK?

7. Does that one have eyes? (When looking at this picture of e.coli.)

8. They look like hot dogs! (Ok, so not a question, but hilariously accurate – of the e.coli, again.)

9. Why does one of my eyes have a bit of brown in it? (This was a child with blue eyes, except for a wedge of brown in one eye.)

10. Is the science in CSI (the TV program) like real science?

11. Are some scientists going to destroy the world with black holes? (A little off-topic, but I didn’t mind at all!)

As you can see, not all of them were strictly on-topic, but they just kept asking question after question. They also did the classic kid trick of raising their hand as if to ask a question, when their real purpose was telling you all about their vacation/pet dog/pet hamster/pet cat/Uncle who used to be a scientist but now works at Asda (yes, really!). But I didn’t mind those at all. I kept on running over time in each classroom, as they had so many things to ask me. It didn’t matter what age – pitch the talk in the right way, and they really seemed to enjoy it!

Some top tips if I were to do it again (which I really would like to do – the teacher I’m paired with and I have some ideas for next time) include:

1. My method of using no text on the vast majority of the slides really worked. It was especially useful as it meant I could stop anywhere in my slides if I was running out of time, and the littlest ones were not distracted by trying to read the words rather than listening to me.

2. Pictures of fluffy, pretty, cute, or “gross” animals were very, very popular. The number of “Awwwws” I got when showing pictures of cats was astounding. Equally, all the older ones wanted to see my pictures of the newborn mice (pretty gross with no hair!), and all ages enjoyed trying to figure out what the photo of e.coli was.

3. As soon as you ask a question, they all raise their hands to answer it. Not sure when this stops, but I know that by the time I was in high school the teachers had a hard time prying any answers out of the majority of us! 😉 However, on Monday I was at a school where the eldest was 11, and they all wanted to contribute. So, ask them questions. I found there were two types: the question where I wanted to get an answer (such as “What traits make a good horse?” or “What do you think makes these two cats different?”) and the type where I just wanted them to feel included in the talk, and just wanted a show of hands (such as “How many of you have a cat?” or “Who has heard of diabetes?”).

4. Introduce some ethics, and show how scientists think very carefully before doing research. We talked about genes a lot, and how putting new genes in bugs like e.coli can help us, e.g. the human insulin gene into e.coli to help with diabetes. I told all the older kids that it wasn’t the tool that is a problem: a tool is neither good nor evil. It’s how that tool is used, and people need to make a fresh decision, and think about the benefits and downsides each time that tool is used. I said genetic modification is like a knife: it is neither good nor bad, and that scientists try very hard to make sure that it is used for the right reasons, and in a safe way.

5. Visually-arresting analogies. Even though DNA is a double-helix and not a spiral staircase, I found it a very useful analogy, especially for the younger ones.

6. My partnered teacher had prepared some slides to show the kids prior to my arrival. They dealt with Mr. Green Genes, the GFP-glowing cat. Some of the other teachers also talked to their kids about inheriting some of your traits from your mom, and some from your dad, and used the labradoodle as a visual aid. This prepped them for my talk, which I think was really helpful.

7. Make your talk inclusive. It keeps their interest, I think. When I showed pictures of cats, I included one picture of my own cat, and told them a little about her. I often asked them questions about if they had pets, or scientists in the family, or liked the look of a picture, or knew what something was.

These are probably things that most people are well aware of, however, I thought I’d just share my experiences!

Things That Surprised Me

1. How many of them knew the word “bacteria” before I could even say it. It was, strangely enough, the top answer to my “What do you think this is?” question when I showed them the picture of e.coli.

2. How many of the kids, without prompting, came up to me after my talks and said that they really enjoyed it.

3. How many came up to me after my talks to ask more questions, or tell me about a scientist in the family.

4. How much enjoyment I got out of giving my talks, and from listening to what the kids had to say.

5. One of the kids made an immediate connection between adding “glowing genes” (GFP etc) to fish, and Jurassic Park. Ok, so it isn’t an exact analogy, but that was really great to hear. It also brought forth a discussion, led by the kids, about saving endangered animals.

And, in one direct appeal to my vanity, a little 5 or 6 year old girl told me as I was leaving her class that she thought I was pretty! Wow, what a nice way to finish a talk, and it definitely helped the ego 😉 I thanked her, and the teacher heard her and told her that her house could have a point. Then I realized that their school, just like Hogwart’s, had houses that got points! Too cool 🙂 And finally, a very great compliment from the teacher I’m paired with: “the kids are so much more enthusiastic about science and a lot of them have asked when you are comming back! Your work was perfectly pitched to the children’s needs and was explained in a way that was so easy to understand.” Thanks!

I highly recommend the Teacher Scientist Network. If you are interested in registering with the Teacher Scientist Network in my area (operated by Science Learning Centre North East), please visit and register at as a scientist. Claire Willis will then receive your application and arrange a mutually convenient time to meet up. If you’re interested, but aren’t sure where to go for your area, then have a look at that page – you can send questions to Claire from there. that website also has more information about the TSN. They don’t ask for very much time from scientists at all, from a day or two per year, to anything that the teacher and scientist agree to. In my case, the head of my Centre told all of us employees that if we wanted to volunteer for the TSN, we could do, and do it on work time. He is most generous, and definitely sees the benefit of science outreach to schools.

Thanks to the TSN, my bosses, my partnered teacher, and most especially all those kids! 🙂

Read and post comments |

Send to a friend